
Replicated and Consistent Distributed Data Storage
Roy Shadmon

CSE Department
University of California Santa Cruz

Santa Cruz, California

Niharika Srivastav
CSE Department

University of California Santa Cruz
Santa Cruz, California

Abstract—This project develops a verifiable mechanism for
independent nodes receiving transmitted data to respond to client
read-only queries. In addition, this system ensures that when a
client sends a request, all the nodes process the request on the
most recently processed state of the data. This mechanism also
allows a client to determine which node(s) are not abiding by
the service level agreement (SLA) if one node is significantly
behind in committing data compared to the other nodes. This
system manages crash faults. For example, if a node crashes, it
can verifiably receive the data it failed to receive when it became
unavailable as soon as it comes back up. The protocol used to
implement this is the gossip protocol. Also, each node keeps a
log containing all of its commits, which allow for a quick way to
catch up a benign node.

Index Terms—Distributed Database, P2P Network, Replicated
storage, IoT, Fault Tolerance

I. INTRODUCTION

In the world of big data, data is continually being recorded
by some device and transmitted to some server to process
and store the data efficiently. A client, also known as the
data owner, is then able to request the server to retrieve
the data transmitted from the device. In most cases today,
data owners store their data using a single cloud provider
such as Google Cloud, Microsoft Azure, or Amazon Web
Services. If a client needs their data to be replicated, the
data is replicated on multiple servers hosted by the single
cloud provider. The problem with the common approach is
that there is still no availability guarantee if data is hosted on
one cloud [1,3]. What happens, for example, if there is an
outage amongst Google Cloud servers [2]? Data is not truly
replicated in an isolated manner if the same cloud provider
hosts it, as the failure of one cloud provider causes a failure
in the replication of the entire system. Yes, Google can host
our data over multiple data regions. However, this relies
upon requests to travel farther distances; hence, decreasing
performance. If data were to be stored over multiple cloud
providers, on the other hand, then there would be stronger
availability guarantees. However, using multiple large cloud
providers is rather expensive, and the setup of the system is
not obvious. Besides, when a client sends a request to a server
that is hosted within a data center, the request must travel
through the data center to find the correct server, process the
request, and then traverse through the data center again for
the message to be sent back to the client [3]. This arduous
request processing hinders the performance of a client’s
request, which can be avoided using new technologies. Using

direct nodes (possibly nodes in P2P networks), we can
leverage nodes that offer data storage and processing services
by providing the client and devices direct access to making
requests; these node servers can process requests on the edge
of the network, which mitigates the need of a request and
response traversing through a data center. In addition, we can
replicate the data over multiple independent nodes that offer
similar SLAs. For example, if a client wants to transmit their
IoT data to nodes offering data services, we can set the data
to be transmitted to all the nodes where we want the data to
be replicated.
Assuming that the devices transmitting data is trusted
meaning a device will always send the data to all nodes (since
one cannot trust the data sent from an untrusted device), a
requirement for this system is to ensure that when a client
makes a request to the nodes, the nodes are all processing
the request on consistent data. This is important because a
client needs their data to be highly available in the case a
node becomes benign (the node intends to act honestly, but
fails for a short, finite period of time). In the first phase of
this project, we assumed all nodes are honest, as well as; no
node will crash. In the second phase, assumed all but one
node can become benign for some finite period of time. For
the implementation, we have not considered byzantine nodes.
However, future work will definitely address a byzantine
setting. In addition, we assume that all queries made by a
client are exclusively read-only queries since updates and
writes by clients are not needed in an IoT architecture. In
this project we have developed a verifiable mechanism for
independent nodes receiving transmitted data. The system
ensures that when a client sends a request, all the nodes will
process the request on the most recent processed state of
the data. One possible method to do this is to develop an
efficient batching mechanism where nodes agree to commit
a predefined count of data. For example, nodes can agree to
commit every 10 pieces of data received. This mechanism
will also allow a client to determine which node(s) are not
abiding by the SLA if one node is significantly behind in
committing data compared to the other nodes.
After getting this mechanism to work and assuming nodes
may not be benign, we attempted to support node recovery.
For example, if a node crashes, it can verifiably receive the
data it failed to receive when it becomes unavailable, using
the gossip protocol. A gossip protocol[5] is an algorithm to
implement peer-to-peer communication that is based on the



way epidemics spread. Distributed systems use P2P gossip to
ensure that data is disseminated to all members of a group.
In addition, each node keeps a log containing all of its
commits, which allow for a quick way to catch up with a
benign node.

II. DESCRIPTION OF THE PROTOTYPE

The system consists of a device, a client and multiple
servers. The device continuously sends data to the servers
where it’s saved in a database. The client can currently only
query for the value at a specific date (just like a key-value
store) from any of the servers; the client must specify which
server it wants to query. The servers, the client, and the
device use PubNub[6], a global data stream network that
acts as our node-to-node communication tool. PubNub is a
real time Infrastructure as a Service (IaaS) tool that allows
for decentralized entities and to send and receive messages
through channels. A channel can be thought of as a host and
port entry point where nodes can communicate with each
other in real-time. In addition, every server maintains its own
database instance and a server log where it keeps track of
every key-value it commits to the database.
The overall architecture of our system is a single device that
transmits data to multiple servers. Currently, a single client
is then able to query a specific server regarding a key and
the server will return a value. Our prototype also supports
fault-tolerance, which is discussed in the following section.

III. FAULT TOLERANCE

If a server were to fail, the server upon come up will
communicate will active servers listening to the recovery
channel. The node who needs to recover missed data will use
its log to see what data has been committed. The steps to
recover missed data is as such: the failed server looks at its
first log item and last log item. It then sends this information
to all other servers and those servers run a query to receive
all the data before the log item and all the data after the last
log item. Once the servers compute the result, they send the
result to the initial requesting node.

IV. DESCRIPTION OF THE SUGGESTED BYZANTINE
FAULT-TOLERANCE ENHANCEMENT

To support byzantine fault-tolerance, we can simply use
paxos for the servers to come to agreement on the contents of
the data. In addition, we can skip all the phases and have each
server send the client its result and the client would be the one
determining which value is correct. Of course, this assumes
that the client is trusted, and we will discuss this more why
this is a valid assumption. This is something we are also still
thinking about.

REFERENCES

[1] Majadi, Nazia. (2012). Cloud Computing: Research Issues and Chal-
lenges.

[2] Marcos K. Aquilera, Brian Cooper, Yanlei Diao. Why does the Cloud
Stop Computing?: Lessons from Hundreds of Service Outages (2016).

[3] M. Malathi, ”Cloud computing concepts,” 2011 3rd International Con-
ference on Electronics Computer Technology, Kanyakumari, 2011, pp.
236-239. doi: 10.1109/ICECTECH.2011.5942089.

[4] T. Neudecker, P. Andelfinger and H. Hartenstein, ”Timing Analysis
for Inferring the Topology of the Bitcoin Peer-to-Peer Network,” 2016
Intl IEEE Conferences on Ubiquitous Intelligence and Computing,
Advanced and Trusted Computing, Scalable Computing and Commu-
nications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
Toulouse, 2016, pp. 358-367.

[5] K. Jenkins, K. Hopkinson and K. Birman, ”A gossip protocol for
subgroup multicast,” Proceedings 21st International Conference on Dis-
tributed Computing Systems Workshops, Mesa, AZ, USA, 2001, pp.
25-30. doi: 10.1109/CDCS.2001.918682

[6] The Publish-Process-Subscribe Paradigm for the Internet of Things
Bhaskar Krishnamachari, Kwame Wright July 2017


