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ABSTRACT

With the onset of COVID-19 affecting hundreds of thousands glob-
ally, we wanted to explore how cultural aspects play a role in the
rate of infection and the spread of the virus. In addition, we are
interested in using available COVID-19 data in order to perform
time series forecasting and predict peak projections. The goal of this
project is to study the effect of social distancing and government
intervention factors on the spread of the curve of COVID-19. We
want to learn from the forecasted models whether our assumptions
were valid by comparing those two methods of modeling a pan-
demic. As a result, we can gain insight from countries who have
already experienced a peak in confirmed cases and learn whether
social distancing and government intervention factors work, in
order to help other countries minimize the rate of infection.

1 INTRODUCTION

COVID-19 is a disease caused by the virus SARS Coronavirus-2,
which is a a type of coronavirus. It is currently a global pandemic
and has caused mass casualties. This virus has caused over 400,000
deaths globally and about 100,000 in the United States itself, by
date. We have analysed COVID-19 effects in mainly two ways: Peak
prediction to predict the infection curve for different countries and
SEIR Model Simulations to simulate the effects of different social
and cultural aspects of different countries on COVID-19 numbers.
The peak predictions are based on real data about infection rate,
confirmed cases, deaths and recovered cases. This analysis helped
us predict the future curve in the countries and states under con-
sideration. On the other hand we made simulations for infection
curves based of the reproduction number in different states/ coun-
tries. These simulations help us understand the different effects of
COVID-19 in socially and culturally different places and if these
socio-cultural aspects have affected the spread of COVID-19.

2 EXPLORATORY ANALYSIS

Data sets that were used to perform our data analysis and spread
forecasts include the COVID-19 data repository provided by Johns
Hopkins University Center for Science and Engineering (JHU CSSE)
[11]. This data repository is open to the public and contains world-
wide time series data beginning January 22, 2020 for a compre-
hensive list of province/state and country/regions. The time range
we performed our analysis on was from January 22, 2020 to May
29, 2020. Johns Hopkins data repository includes data for the total
number of confirmed cases, deaths, and recovered. We decided to
choose a subset of countries so we can focus on select features
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for our simulation models and compare the results to our spread
forecasts. The countries chosen were: India, Saudi Arabia, and the
United States. Within the United States, we focused on three states:
New York, California, and lowa. We selected these states and coun-
tries because of the differences in population, location, and cultural
intervention factors.

2.1 Confirmed Cases of COVID-19
Visualization

These graphs help to provide a visual analysis for what the trends
look like for confirmed cases in Saudi Arabia, India, and the United
States. Furthermore, we used these visualizations to decide which
model would best fit our data for spread forecasting of COVID-19.
Among these three graphs, we see in Figure 2, that the United States
has the highest amount of cases as of May 29 with over a million
confirmed cases. The amount of cases with respect to date provides
a line that looks almost linear. This is quite different compared to
Saudi Arabia and India, Figures 3 and 4 respectively, which both
have a line that looks more like a logistic curve.

We assume that at some point in the future, the curve will flatten
as the rate of infection slows down and number of cases eventually
decrease which would represent the logistic curve [6]. We make
this assumption due to data exploration from countries that have
been affected earlier and have already seen the curve of confirmed
cases flatten such as Wuhan China, South Korea, and Italy. Figure
1 shows the dates for when the total number of confirmed cases
have passed 100 cases.

Countries Date Surpassing 100 Confirmed cases

South Korea February 20, 2020

Italy February 23, 2020
United States Mareh 3, 2020
Saudi Arabia March 14, 2020
India March 14, 2020

Figure 1: Confirmed cases surpassing 100 cases
from Johns Hopkins Data



Figure 2: United States Confirmed Cases
May 29: 1,746,019 cases

Figure 3: Saudi Arabia Confirmed Cases
May 29: 81,766 cases

Total Cases

Figure 4: India Confirmed Cases
May 29: 173,491 cases

3 SPREAD FORECASTS

Our goal was to use the available data as well as the information we
had gained about the data through exploratory analysis to forecast
the spread of COVID-19. The approach we took was to optimize a
parametric curve fit of the currently available data with two well
known growth functions: the logistic curve and the Gaussian curve.
Then, we extended this curve to dates in the future to create a
forecast for the spread. For regions that had not hit their peak cases
yet, this also projects a value and date for the peak. These forecasts
were done on both total cases and active cases for India, Saudi
Arabia, South Korea, United States, and a few states within the US:
California, New York, and Iowa.

We believe that using a curve fitting approach would be a good
method for forecasts because there exists popular off-the-shelf
forecasting models such as Prophet (made by Facebook’s Core
Data Science team) which is also a type of curve fitting model. The
Prophet model takes into account trend, seasonality, and holidays by
using either a piecewise linear or logistic growth curve for modeling
time-series data [3]. Our model does not take into account effects
of holidays or seasonality but it is based on real data provided by
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Johns Hopkins. The following sections will explain each growth
function used and our results.

3.1 Logistic Curve Fitting

For modeling the total number of confirmed cases, we decided to
use a logistic function since the number of confirmed cases can
not go beyond the total population of the selected country and
we’d eventually see the curve flatten [6]. The logistic function is
a growth function that can model scenarios in which there is an
increasing growth rate in the beginning and a decreasing growth
rate towards the end. This makes it a good choice for scenarios
such as popular growth or the spread of a disease in terms of total
cases, which is the way we are using it here.
The logistic function we used is shown below:

¢ = curve's capacity

m = sigmoid’s midpoint
k = logistic growth rate
x :xeER

f(x) = (1+g—cfr(x—rr=))

In order to minimize the error of the logistic fit on the time series
data we have available, we used SciPy, a free open-source Python
library [12] that contains a wide range of computational methods
such as their optimize curve fit module. This module was used to
find the most optimal coefficients and parameters to optimize the
curve fit. Once we had the best fitting model, we could use it to
create a forecast. The forecast was done by extending the dates into
the future and continuing the curve to produce daily predictions.
Figures 5, 6, 7, 8, and 9 show the logistic fit and forecasting for
the countries of India and Saudi Arabia, as well as the US states of
California, New York, and Iowa.

3.2 Logistic Curve Fitting Results
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Figure 5: Saudi Arabia
Logistic Fit for Confirmed Cases
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Figure 6: India
Logistic Fit for Total Confirmed Cases
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Figure 7: California
Logistic Fit for Total Confirmed Cases

3.3 Gaussian Curve Fitting

To model the active cases on a given day, we used the Gaussian
curve. Although this is not a perfect choice for this data, the normal
distribution is a good choice for modeling many natural phenomena,
including active cases of an infection. Similarly to the logistic curve,
this shows a rapid growth in active cases followed by a rapid decline.
For India and Saudi Arabia, we were able to calculate daily active
cases by subtracting total recoveries and total deaths from the total
confirmed cases. For the US states, however, this data was not
available, so we instead modeled on new cases data. This is not an
exact representation of true active case data, but we felt that it was
a close approximation of the general trend using the data that was
available to us.

Just as in the logistic curve fitting, we used the optimize curve fit
module from SciPy to fit the above Gaussian function. Using the
generated best fit parameters, we then plot the function on top of
known data. We extend this function to generate forecasts for dates
in the future. Figures 10, 11, 12, 13, and 14 show the Gaussian fit
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Figure 8: New York
Logistic Fit for Total Confirmed Cases
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Figure 9: Iowa
Logistic Fit for Total Confirmed Cases

and forecasting for the countries of India and Saudi Arabia, as well
as the US states of California, New York, and Iowa.
The Gaussian function we used to curve fit is shown below:

bt a = height of curve's peak
f(x) =qge 2 b = center of the peak
¢ = standard deviation

(controls width of the bell)

3.4 Gaussian Curve Fitting Results

These graph results contain black dots which show the data points
from Johns Hopkins data repository. The green line is the model
we’ve fitted and the red line is the prediction. As you can see below,
our Gaussian curve fits better for the Active Cases in Saudi Arabia
and India, compared to the new confirmed cases for the states New
York, California, and Iowa.
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Figure 10: Saudi Arabia
Gaussian Fit for Active Cases
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Figure 11: India

Gaussian Fit for Active Confirmed Cases
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Figure 12: California
Gaussian Fit for New Confirmed Cases
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Figure 13: New York
Gaussian Fit for New Confirmed Cases
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Figure 14: Iowa
Gaussian Fit for New Confirmed Cases

4 CULTURAL AND INTERVENTION
EXPLORATION

In order to learn more about the factors affecting the spread of
COVID-19, we approach this by simulating spreads using the pa-
rameters we believe have the most effect on the spread. This will
enable us to look into the future and see what would a spread
look like based on different variations of these parameters. Looking
at the simulated spreads, we can compare them to the forecasted
spreads and deduce the parameters that actually affected those
trends based on the similarities and differences between different
spreads.

In this section, we will start with an overview of the model used
for simulating the pandemic. Next, we will discuss the different
factors and parameters considered and collected for the simulations.
Finally, we share the simulations for the countries chosen before
based on the different variants of the factors in consideration.
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Recovered

Figure 15: SEIR model parameters

4.1 Model for Simulating a Pandemic

Here we will talk about the SEIR model, it’s parameters and how it
ties with our purposes. The SEIR Model is a compartmental model
in epidemiology which is used to study the effects of a pandemic
on a given population. In this model the population is divided into
four groups: Susceptible, Exposed, Infectious and Recovered, as
shown in Figure 15. The sum of these groups of people is assumed
to be constant. The infection rate f is the rate at which susceptible
people become infected. o is the incubation rate which represents
the time duration when an individual is infected but doesn’t show
any symptoms of the disease. The rate of recovery is represented
by the letter y. The most important number is the Reproduction
Number which is the ratio of the Infection rate to the Recovery
rate. This number represents the number of Susceptible people that
can get infected at an average by an infected person. We used this
parameter in our simulations to represent some of the social and
cultural parameters.

4.2 Factors Considered

There are many factors that could have greatly affected the spread
of COVID-19 and determine how flat the curve would be. In order
to come up with simulations that reflect the real spread of the curve,
we collected data about the two countries (India and Saudi Arabia)
and three states (California, New York and Iowa) on the reproduc-
tion factors, the healthcare capacity, the dates at which government
enforced interventions, and whether curfew or lock-downs were en-
forced as shown in Table 1. We vary the reproduction rate based on
the specific information regarding each country. We considered the
US states separately because within the United States, COVID-19
had significantly different effects in each state. The governmental
interventions were also quite different in each state, which becomes
proportional to the severity of COVID-19 in these states.

Our assumption is as follows, the reproduction rate is a factor
controlled not only by the disease itself, but also by the cultural
differences between countries. In a country where the population is
used to big gatherings and large family sizes, the reproduction rate
of COVID-19 is higher than countries that are culturally less social
and has a smaller family size. Moreover, populations that adhere
to government interventions appear to have lower reproduction
rates than countries that don’t. In that sense, the reproduction rate
carries in it the cultural and intervention effects on the spread based
on country.

In addition to the aforementioned factors, we also include the
healthcare capacity in some of the simulations to show how the
urgency of interventions dramatically affects how overwhelmed
the healthcare system is forecasted to be affected.

4.3 Cultural Effect Exploration

We share the simulations for the countries and states with and
without the social and cultural differences. As mentioned earlier, we
considered a few social and cultural aspects of these countries and
states and made simulations for different reproduction numbers. We
made simulations for different reproduction numbers, representing
the the different parameters shown in Table 1.

The simulation figures for India and Saudi Arabia (shown in Fig-
ures 16 and 18) show how the social aspects influence the COVID-19
infection curves. Also reducing the reproduction number by con-
scious social distancing can reduce the infection rates significantly
(shown in Figures 17 and 19) . These simulations are heavily influ-
enced by the parameters like the average family size in the country,
population, etc. The effect of this is reflected in the reproduction
number in these countries. Figures 20 and 21 show the simulations
for curves without any social distancing in California and New York
respectively.

In US the reproduction numbers are comparatively lower due to
multiple factors like the population density, less number of people
per family, and better social distancing. The curves for California
and New York are reflective of these parameters.

INDIA: Projected Disease Spread (without any interventions)

Reproduction number. 2.8, Incubation period: 5 days, Recovery period: 14 days, People initially exposed: 1024

Infected

Susceptible
—— Recovered

Apr Jut Oct Jan Apr
2021

Figure 16: India
Simulation without any social distancing.

INDIA: Projected Disease Spread (with social distancing)

Reproduction number: 1.4, Incubation period. 5 days, Recovery period: 14 days, People initally exposed: 1024

Infected
—— Susceptible

—— Recovered

Figure 17: India
Simulation with social distancing.



Saudi Arabia: Projected Disease Spread (without any interventions)

Reproduction number. 4, Incubation period: 5 days. Recovery period: 14 days. People iitially exposed: 1453
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Figure 18: Saudi Arabia
Simulation without any social distancing,.

Saudi Arabia: Projected Disease Spread (with Social Distancing)

Reproduction number. 2.5, Incubation period: 5 days, Recovery period: 14 days, People initially exposed: 3000

Infected
Susceptible

—— Recovered

Figure 19: Saudi Arabia
Simulation with social distancing.

4.4 Governmental Intervention Exploration

In this section we share the simulations with and without the inter-
ventions. In India lockdown was implemented after 55 days from
the discovery of the first confirmed case. This can be seen in Figure
22. If this intervention was delayed by another 10-30 days then
the infection curves would be much higher. This can be seen in
the next two Figures 23 and 24. For Saudi Arabia there were two
different lockdowns implemented, one partial and then the full
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California : Projected Disease Spread (without any interventions)
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Figure 20: California
Simulation without any social distancing,.

New York : Projected Disease Spread (without any interventions)

Reproduction number: 1,68, Incubation period: 5 days, Recovery period: 14 days, People intially exposed: 1578

Infected
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—— Recovered

o M o 5
Figure 21: New York
Simulation without any social distancing,.

lockdown. The first two graphs show curves for these two gov-
ernment Interventions (Figures 25 and 27). We can see here that if
the government intervention would have been delayed by another
30 days then the infection spread could have been much worse
(Figure 27). The black vertical line in these simulations depicts the
time of government intervention and the horizontal blue line rep-
resents the health care capacity of the country/state. We can see
that if the government intervention was delayed, then the number

Table 1: different factors referenced in the simulations

: healthcare reproduction | reproduction
family , , government
country/state | . Population | capacity . . rate before rate after
size Intervention | . . . .
(no. of beds) interventions | intervention
Saudi Arabia | 6 35M 120K 3/24 3.8 2.5/0.8
India 4.5 1.4B 700K 3/24 2.5 1.29/0.43
California 2.96 39M 75K 3/19 1.8 0.94
New York 2.57 19M 57K 3/22 1.68 0.84
Iowa 2.41 3M 6K 3/15 1.94 0.86
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of patients/infected population would have crossed the healthcare
capacity for all countries.

INDIA: Projected Disease Spread (with interventions after 55 days)

RO: 2.8, R with nt 0.9, Incubation period: 5 days, Recovery period: 14 days, People iniially exposed: 2000

Infected
Susceptible

Recovered

Figure 22: Simulation for India with Government
Intervention at 55 days after the first confirmed case.

INDIA: Projected Disease Spread (with interventions after 65 days)

10166 RO: 2.8, R with interventions: 0., Incubation period: 5 days, Recovery period: 14 days, Peaple iitilly exposed: 2000
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Figure 23: Simulation for India with Government

Intervention at 65 days after the first confirmed case.

INDIA: Projected Disease Spread (with interventions after 90 days)

10186 RO: 2.8, R with interventions: 0.9, Incubation period: 5 days, Recovery period: 14 days, Peaple initially exposed: 2000
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Figure 24: Simulation for India with Government
Intervention at 90 days after the first confirmed case.

Saudi Arabia: Projected Disease Spread (with interventions after 22 days)

RO: 3.8, R with interventions: 0.8, Incubation period: 5 days, Recovery period: 14 days, Peaple initially exposed: 3000
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Figure 25: Simulation for Saudi Arabia with Government
Intervention at 22 days after the first confirmed case.

Saudi Arabia: Projected Disease Spread (with interventions after 30 days)

RO: 3.8, R with interventions: 0.8, Incubation period: 5 days, Recovery period: 14 days, Peaple initially exposed: 3000
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Figure 26: Simulation for Saudi Arabia with Government
Intervention at 30 days after the first confirmed case.

Saudi Arabia: Projected Disease Spread (with interventions after 60 days)

RO: 3.8, R with interventions: 0.8, Incubation period: 5 days, Recovery period: 14 days, Peaple intially exposed: 3000
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Figure 27: Simulation for Saudi Arabia with Government
Intervention at 60 days after the first confirmed case.



California: Projected Disease Spread (with interventions after 70 days)

R0: 2, R with interventions: 0.8, Incubation period. 5 days. Recovery period: 14 days, People iniially exposed: 2000
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Figure 28: Simulation for California with Government
Intervention at 70 days after the first confirmed case.

New York : Projected Disease Spread (with interventions after 20 days)

RO: 1.68. R with ns: 0,84, Incubation period: 5 days, Recovery period: 14 days. People initially exposed: 2000
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Figure 29: Simulation for NY with Government
Intervention at 20 days after the first confirmed case.

5 DISCUSSION

When we examine both the forecast graphs and simulation graphs
of the spread for each country/state, we are able to draw conclusions
on the effects of government intervention and the importance of
social distancing based on the active cases curves.

In Figure 10, the active cases data of Saudi Arabia show a maxi-
mum of 30k active cases. The forecasting model predicts the cases to
decrease until a full recovery by end of July. The simulation shown
in Figure 25 was not exposed to the data used in modeling Figure
10, only to the factors we speculated to have effects on the spread of
COVID-19, such as the reproduction number which correlates with
social distancing and the government intervention dates (whether
partial curfew or a complete lockdown) which in place affects the
reproduction number even further. The fact that the simulation
peaks at a close value to the real data asserts our assumptions that
the main factors shaping a spread curve are the urgency of the
interventions and the adherence to social distancing. There are
however some discrepancies such as the sudden drop of cases in
the simulations graph as opposed to a smoother curve in real data.
This is due to the SEIR model not taking into consideration the
lag between the intervention date and the correspondence of the
population.
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In contrast, there is a possibility that the simulations do not
match the projected peak of the modeled curve based on the active
cases, such as what we see with the simulations for India (Figures
11 and 22). This could be due to numerous reasons based on the ob-
servations we make. When the simulations show lower predictions
based on the given parameters, it could mean that the population
did not adhere to the interventions correlated with these parame-
ters and thus resulted in much higher peaks in real life. This reflects
in the projection models forecasting a higher infection rate than
the simulated cases.

On the other hand, if the simulations present higher predictions
than what we observe in real life, it could signal a mismatch in data
collection and inaccurate or inconsistent cases. This can occur when
not all cases are recorded, which is often the case. In other cases, the
discrepancy between the projections and simulations could simply
mean that the projection model was not accurate. Particularly, it is
very hard to predict when the spread curve will peak and bend for
countries/states that did not reach the peak number of active cases
yet.

To summarize, we deduce these explanations to justify differ-
ences between simulations predictions:

o The SEIR model deficiencies: it considers the population to be
constant/not considering death cases. It also takes constant
values for reproduction number as input, not continuous.
The lag between declaring intervention dates and the actual
population compliance which delays the actual results of
lockdown by the incubation period ( 14 days).

People not adhering to social distancing measures results in
different projections vs simulations.

The fact that the reproduction rate is different in the simula-
tions vs. the projections. This is because the RN is embedded
in the temporal data used to generate the forecasting models,
where as in simulations a single constant is fed to the model.
Healthcare capacity is also dependent on multiple parame-
ters and it also increased significantly in some countries like
India during the pandemic due to impromptu beds specifi-
cally staffed to combat the pandemic.

6 CONCLUSION

The goal of this project is to closely study the cultural and gov-
ernmental intervention factors and their effects on the spread of
COVID-19. In order to do that, we started with exploratory analysis
of multiple countries and states. Next, we implemented multiple
curve fitting models such as logistic and Gaussian curves. The
model choice depends on the data in question and how it behaves.
Subsequently, we collected more data about those countries/states
in order to produce simulations of the active cases in each of them.
Based on these graphs, we found that the parameters we collected
and decided to use for simulation generation had great effects on
the spread of COVID-19. However, there were other factors that
could overshadow the effects of our parameters and we included
them in the discussion section.

This work asserts the positive effects we suspected when study-
ing which parameters have to do with the spread of COVID-19,
such as government intervention. An interesting aspect that we
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noticed is that some of those countries and states that started open-
ing up are noticing a second wave of infections. The curve is no
longer Gaussian. We are aware of present mass gatherings and the
analysis we have performed was before so. A compelling future
work extension is studying how reopening affected the spread.
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