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Abstract

Trust prediction in social media networks is a very important
aspect in understanding the probable relations between social
media users. To do a proper study of a social media network,
for recommender systems, advertising, or prediction systems,
trust analysis between users proves to be very useful. This
project mainly focuses on understanding and comparing dif-
ferent PSL trust models (or combinations of psl trust models)
to predict trust between individuals in a social network. The
trust models in this project are based on the attributes of peo-
ple, similar interests, and/or existing trust information. Also,
in this project we use PSL (a statistical relational learning
framework) to measure trust as a float value between 0 and
1 and not a binary value. This helps in giving a more accu-
rate understanding of the relationship between users. In real
life situations, this makes more sense, since we don’t have a
binary 0/1 trust between people. PSL helps to recognize the
relational information in a social network, and the soft truth
values help to quantize the trust values to varying degrees of
trust.

Introduction

Trust can be defined as the ‘willingness of a party to be vul-
nerable to actions of another party based on the expectation
that the other will perform a particular action important to
the trustor, irrespective of the ability to monitor or control
that other party’ (Mayer, Davis, and Schoorman 1995). Al-
most all decisions a person makes are subconsciously dic-
tated by trust. It plays an important role in almost all hu-
man interactions. Trust plays an important role in people’s
personal and professional relationships, families, and social
interactions. Trust prediction in social networks is required
to solve the enigmatic problem, which consists of predicting
a trust value when the trustor has no direct previous experi-
ence with the trustee.

Trust is a complex social concept and an important com-
ponent of almost all social interactions/ relations. This phe-
nomenon can be calculated between friends, acquaintances,
colleagues, etc., in different social relationships. Thus, trust
prediction analysis is very useful in solving a wide range of
problems. All such social networks are based on social in-
teractions between people, which are inherently based on a
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certain level of trust. Trust is a very subjective parameter
and it exists in all human interactions. We trust known peo-
ple and even strangers with important personal information
and tasks based on the amount of trust we have in them.
Some trust relationships may be very critical or personal
(like with doctors, family, friends, close relationships) and
some trust relationships might be with unknown people (de-
livery services, seller-buyer relationship, taxi drivers). The
definition of trust and the degree of the trust can be different
in different situations, and can also depend on the context
of the social interaction. Social media network analysis is
useful for measuring trust levels in online social networks,
for example, retweet behaviour detection (Bild et al. 2015),
(Abdullah et al. 2017), fake news detection (Ghafari et al.
2018), recommender systems (Ma, Lu, and Gan 2015), (Yu
et al. 2016) social spammer detection (Li et al. 2015) and in-
fluence spread problem (Calio and Tagarelli 2019), (B. Abu-
Salih and Albahlal 2020).

The past models have used various kinds of features and
parameters (like user reputation, social context) and various
algorithms (like neural networks, supervised and unsuper-
vised learning) to predict the trust values between people in
social networks (Liu, Zhang, and Yan 2018), (W. Sherchan
and Paris 2013), (Tang and Liu 2015), (A. Josang and Boyd
2007). Many of these social network analyses consider trust
to be a binary valued parameter. In most real life scenar-
ios, this may not be the best form of trust representation.
Therefore, in this project we use the concept of real values
(between 0 and 1) for trust. This gives a more accurate rep-
resentation of trust between individuals in a social network,
since strict logical rules are not very accurate predictors for
a social concept with a lot of variance and forms and degrees
of trust between people.

In this paper we used PSL (Probabilistic Soft Logic), a
statistical machine learning framework. PSL is particularly
effective to solve this problem (Bach et al. 2017). It uses first
order rules with soft truth values. This helps to calculate a
degree of trust between individuals. This is a more natural
and intuitive framework for trust analysis. This project deals
with predicting trust relations (edges of the social network
graph) in a partially labelled social network of users (nodes).
This is done by defining first order logical rules based on
different trust models. This project does a comparative study
of models from four different papers (Huang et al. 2012),



(Huang et al. 2013), (Bach et al. 2015), (Bach et al. 2017).
These papers overall model 13 different trust models and
study different aspects of trust models in different ways on
different datasets. This project does a holistic analysis of all
the models. We apply these models on both datasets studied
in these papers.

The rest of this report is organized as follows: The next
section - Related Work presents with different kinds of trust
prediction features and algorithms used in previous papers.
The following section - Methodology, describes how the
trust is represented in this paper and how we use PSL to
implement different trust prediction models. After explain-
ing methodology, the next section - Empirical Evaluation,
explains the dataset, the trust models and the experimental
results seen in this project. Lastly, Conclusion summarizes
the results and the key findings of this work and explains
some possible future work. The Model Appendix at the end
of the paper, details the different rules within the different
trust models.

Related Work

With the development of scientific knowledge and technol-
ogy, different branches of science that focused on human
behavioural analysis and human interaction analysis started
to study the concept of trust. Trust prediction in a social net-
work has been researched in many different ways. Various
different papers suggest different algorithms, techniques,
features or latent models. The most common method has
been to use the most basic form of machine learning mod-
els using existing trust relationships and similarity informa-
tion between people based on a known aspect and predicting
other trust relationships using the existing information (Liu,
Zhang, and Yan 2018).

Social media websites are one of the most popular online
collaborations, where people share their experiences with a
large number of unknown people, as well as their friends.
The social interactions among users in such online com-
munities are constructed based on trust that is established
from each user’s subjective perspective on the limited inter-
action experiences within the community. This paper (Kim
and Phalak 2012) measures a degree of trust based on users’
expertise and preferences regarding various categories, us-
ing users feedback rating data which are available and much
denser than a web of trust. Another way to predict trust be-
tween users is by calculating the reputation of users (Nufiez-
Gonzalez and Manuel Grafia 2015). In this method reputa-
tion is feature chosen subjectively based on background in-
formation of users and existing (known) trust relationships.
The known trust relationships and reputation of users (in
one area of expertise) is used as features to train machine
learning models. Below we discuss some specific aspects
of trust prediction research and the different kinds of algo-
rithms used, in the previous papers.

Context-Dependent Trust Modelling:

In this method of trust prediction models uses context in-
formation(Ghafari et al. 2018), (Tang and Liu 2015). This
model is based on the logic that trusting someone in one con-
text does not assure trusting them in another context (Tang

and Liu 2015). This (Tang, Gao, and Liu 2012) paper talks
about the context dependency of trust in the dataset from a
real-world product review website. The data from the web-
site explicitly gives an option to the users to indicate which
users are trustworthy. (Tang et al. 2013) used this informa-
tion as the truth values for their analysis. The paper con-
sidered items’ categories (e.g., electronics, sports and en-
tertainment) as the context of trust and reported that: ‘less
than 1% of users trust their friends in all categories’ and
‘on average, people trust only 35.4% of their friends in the
networks for a specific category’. Hence, people trust each
other only in certain contexts. Context is the information
about the condition of an entity (Zheng et al. 2014). For
example, if we consider an illustration of a single context
(focusing on the topic of the trust), consider Alice who is a
chef in a big multi cuisine restaurant. She trusts the head
chef, Barbara for cooking tips and guidance; however, she
does not necessarily trust her in topics related to sports. As
a result, predicting pair-wise trust relations with respect to
the different context of trust can be a difficult task.

Supervised Learning Methods:

(H. Liu and Kim 2008) proposed a trust prediction model
and a classifier that works with a set of users’ features and
interactions using supervised learning methods. (Matsuo
and Yamamoto 2009) focused on an e-commerce website
called @cosme, and were the first to describe the concept
of community gravity: a two-way effect of rating and trust.
This was followed with a model to formulate the trust pre-
diction and rating prediction problems. (N. Ma and Liu
2009) discusses a personalised and cluster-based classifica-
tion trust prediction model that creates user clusters and then
trains a classifier for the users. (M. Grafia and Kaminska-
Chuchmata 2015) introduced a supervised trust prediction
approach: a binary classification that focuses on peoples’
perceived reputation. (Wang, Wang, and Sun 2016) pro-
posed a trust-distrust prediction method that also used the
Dempster-Shafer theory and neural networks. This paper
also analysed the effects of homophily theory, emotion ten-
dency and status theory in trust relations (Wang, Wang, and
Sun 2016). (Zhao and Pan 2014) developed another super-
vised trust prediction approach: a classifier with a feature
set that included several trust-related factors. These features
could be demographic features (e.g., age and Gender), pro-
file features (e.g., number of followers and followees), nu-
meric representation of textual contents provided by users
and etc. (S. M. Ghafari and Orgun 2019). They used the
existing trust labels for training their classifier. However,
the main shortcoming of these approaches is the fact that
because of the sparsity of trust relations in online social net-
works, they have not enough label data available for their
training process.

Unsupervised Learning Methods:

(Tang et al. 2013) developed an unsupervised trust predic-
tion model called hTrust. It utilizes the homophily effect on
the trust prediction procedure by focusing on similar users.
In this way, Tang et al. identified similar users based on the
users’ ratings similarity. They considered these aspects for



rating similarities: network users who rated similar items,
network users who gave similar ratings for similar items and
network users who had similar ratings patterns. (Y. Wang
and Cai 2015) proposes an unsupervised trust prediction
model, sTrust, using social status theory and the PageRank
algorithm (Page et al. 1999). In this approach, if a user has
a higher social status in an online social network, he or she
is more likely to be trusted by other network users.

(Guha et al. 2004) developed a trust prediction model that
propagates trust based on users’ trust or distrust relations
with others. Golbeck (Golbeck 2006b) put forward a web-
site called FilmTrust which used trust to produce movie rec-
ommendations. (Wang et al. 2018a) proposed a trust predic-
tion approach that, in addition to learning low-rank represen-
tations of users, also learned these sparse components of the
trust network (Wang et al. 2018a). (Zheng et al. 2014) sug-
gested an unsupervised trust prediction model based on the
concept of trust transference, to transfer trust between dif-
ferent contexts (Zheng et al. 2014). (Y. Wang and Liu 2015)
introduced an unsupervised trust prediction model to infer
trust among users with an indirect connection. (G. Liu and
Zhou 2018) proposed a trust inference model, incorporating
factors such as residential location and out degree. (Wang et
al. 2018b) proposed a novel trust prediction model, CATrust,
for auction websites, using Bayesian inference based on
Markov Chain Monte Carlo. More importantly, their model
considered the contexts of trust.

Why is Trust Prediction difficult?:

User-specified trust relations are extremely improbable
(Wang et al. 2018a). For example, ‘the density of a typi-
cal trust network in social media is less than 0.01” (Tang and
Liu 2015), (Golbeck 2006b). As another example, ‘the spar-
sity of Advogato, Ciao, and Epinions, and Flixster [these
are some datasets often used in trust prediction related re-
search], i.e., the ratio of the observed trust relations to all
the possible relations, is 0.001%, 0.003%, 0.004%, 0.004%
and 0.0035%, respectively (Ghafari et al. 2018), (Tang and
Liu 2015), (Chen and Gao 2018), (Wan 2017). It is chal-
lenging to predict the trust relations well with so limited ob-
served links’ (Wang et al. 2018a). Moreover, trust relations
follow the rules of the power law distribution: many trust re-
lations can be accounted for by a small number of users and
a large number of users participate in only a few trust rela-
tions (Tang et al. 2013). For any trust prediction approach
in the online social networks, the number of known user-
specified trust relations compared to all possible relations
among users is low. This makes the pairwise trust prediction
problem in online social networks a difficult task.

Methodology

This section describes the methodology used to implement
the PSL trust models in this paper. We start with explaining
how the trust relation is represented in the PSL trust models.
After that we explain how we build models using logical
rules to simulate real life trust relationships. After which we
describe the specific trust models used in this project.

Trust Representation

A trust relation between two users is considered a unidi-
rectional relationship between a source user (trustor) and
the user who is being trusted (trustee), that indicates that
the trustor trusts the trustee. Probabilistic soft logic (PSL)
(Broecheler, Mihalkova, and Getoor 2010) is a system for
probabilistic modeling using first-order logic rules. PSL
uses soft-truth values, and allows the truth values to be in
the interval [0, 1] all the while adapting logical connectives
accordingly. The soft logic formulation makes the inference
problem in PSL a convex optimization problem. Next sec-
tion gives a short overview of PSL, its usage, and its internal
representation.

PSL uses first-order logic (FOL) as its underlying mod-
eling language. In a PSL program, relationships and at-
tributes are modeled by different predicates, and first order
rules model dependencies or constraints on these predicates
(Huang et al. 2013), (Huang et al. 2012). For example,

TRUSTS(X, Y) — KNOWS(X, Y)

reads as “if X trusts Y, then X knows Y”, where X and
Y are variables referring to arbitrary objects. Here, they re-
fer to the user names in the social media network in ques-
tion. Replacing these variables (X,Y) with constants (real
names) from the domain of the program results in a ground
rule. PSL extends the notion of rule to the soft context, i.e.,
rules can be assigned a weight, indicating at what expense
a grounding of the rule can be violated or not true for the
dataset. For example, the following rule,

0.6 TRUSTS(X, Y) TRUSTS(Y, Z) — TRUSTS(X, Z)

models that the trust link between X, Y and Z is not fully
transitive and gets weaker along chains of links, by a factor.
0.6 signifies the strength of the specific rule. Furthermore,
a PSL program specifies known truth values for a subset of
ground atoms. For example, KNOWS(Alice,Bob) = 1.0 and
TRUSTS(Alice, Bob) = 0.6 indicate that Alice knows Bob,
but only trusts him somewhat above average. Throughout,
the text, we use the convention that predicates are written in
small caps (e.g., TRUSTS) and variables are italicized cap-
ital letters (e.g., A). To relax Boolean truth values to con-
tinuous variables, PSL uses the Lukasiewicz t-norm and its
corresponding co-norm as the relaxation of the logical AND
and OR, respectively. These relaxations are exact at the ex-
tremes, when variables are either true (1.0) or false (0.0), but
provide a consistent mapping for values in-between. The
formulas for the relaxation of the logical conjunction (A),
disjunction (V), and negation (—) are as follows:

aAb=max {0,a+b-1},
aVb=min{a+b, 1},
—-a=1-a,
The logical conjunction and disjunction are relaxation
from the Boolean domain. Rules are evaluated using the

Lukasiewicz norms by converting the implication operator
with the identity

X—=-Y=-XVY.

The probability distribution defined by a PSL program
measures the overall distance to satisfaction, that is, the



more groundings of rules have high truth values in an in-
terpretation, the more likely it is. More formally, for a PSL
program, let G be the set of all groundings for each rule. For
any grounding g 2 G, let wg be the weight assigned to the
rule, and tg(x) 2 [0, 1] be the grounded rule’s truth value
under interpretation x. The probability distribution over in-
terpretation x defined by the program is

Pr(z;w) = exp(= Y wy(1 — ty(2)))

geG

Considering each grounded rule a factor and each truth value
a variable, this probability distribution becomes a log-linear
Markov random field over continuous variables. Maximum
likelihood inference for the unknown truth values corre-
sponds to solving a linear program, where the truth-value
variables are constrained to be consistent with respect to the
t-norms and are weighted by rule potentials. Additional de-
tails, including a description of a learning algorithm for set-
ting the weights, are provided in (Broecheler, Mihalkova,
and Getoor 2010).

Modeling Trust in PSL

Social network theory studies the structural balance of re-
lationships. This section explains the different models used
in this paper and the relevant logic behind them. One of
the models, for instance, is the same as in Granovetter (Gra-
novetter 1973) social networks tend to exhibit triadic clo-
sure, which is loosely the concept that strong relationships
are transitive. In the context of trust, this idea translates to
how people determine whether to trust others by consulting
with those they trust. For example, if Alice strongly trusts
Bob, and Bob strongly trusts Chris, then triadic closure im-
plies that Alice will likely trust Chris. Another common idea
in analysis of trust is that of reputation, where people who
are trusted gain a reputation of being trustworthy, thus gar-
nering more trust (R. Bhattacharya and Pillutla. 1998). Ad-
ditionally, the qualities of the trustee (i.e.,the person who
is trusted) have been identified as important factors for de-
termining trust. For example, whether Alice trusts Bob de-
pends on Bob’s beliefs and goals, as well Alice’s notions of
confidence in Bob. People also have person-specific innate
tendencies for trust, which may stem from early-childhood
experiences (Castelfranchi and Falcone 2000). Trust is also
known to be affected by the similarity in traits of the in-
volved people. In particular, trust exhibits the notion of ho-
mophily, a concept from social network theory which sug-
gests that people connect to others with whom they are
similar (Cosmides and Tooby 1992). Finally, an impor-
tant aspect of trust is its context dependency. Trust deter-
mines how much individuals value information communi-
cated from each other, so it is natural to consider the level of
trust to be a function of the information’s topic area. Sim-
ilarly, trust behavior varies significantly between different
relationship types, such as trust between family members,
co-workers, or religious group members (Glanville and Pax-
ton 2007). The following section describes the three types
of first order logic rules experimented with in this paper and

the different types of rules in each of the models, each mod-
eling a different aspect from social theory. The rules fall in
three main categories:

¢ Triadic rules: This type of rules have cyclic direction for
trust between three users. The figure [Fig.1.] depicts the
relationship between A, B and C, as shown in this rule:

Trusts(A, B) & Trusts(B, C) — Trusts(C, A)

Figure 1: Representation of triadic closure rules

This can be read as “if A trusts B, and B trusts C, then C
trusts A”. This model exhibits the triadic closure model
explained earlier. The solid lines in the diagram represent
a known relationship and the dotted line represents the
relationship being predicted.

« Status / Hierarchical Model: This model is opposite of
the triadic model. This model says “if A trusts B and B
trusts C, then C does not trust A” [Fig.2.]. This refers to
the hierarchical structure in a professional environment,
where C is more senior to A and B, and B is more senior
to A.’!” is represent the logical negation symbol — below.

Trusts(A, B) & Trusts(B, C) — !Trusts(C, A)

Figure 2: Representation of Status model rules.

* Non- Cyclic: This model is non-cyclic in and represents
rules like, “if A trusts B and A trust C then C trusts B”
[Fig.3]. This rule is given below:

Trusts(A, B) & Trusts(A, C) — Trusts(C, B)

These rules can be thought of as building blocks which
are used individually or in combination for trust modelling
in many SRL formalisms. We have used these rules to repre-
sent different models of trust in our PSL model. We demon-
strate this principle in the context of PSL, allowing us to
easily represent degrees of trust and rely on PSL’s param-
eter learning technique to estimate rule weights. We pri-
marily model trust relations with the predicate TRUSTS. A



Figure 3: Representation of Non-Cyclic model rules.

soft truth value for TRUSTS(A,B) = 1.0 means that A fully
trusts B, while TRUSTS(A,B) = 0.5 means that A somewhat
trusts B, and TRUSTS(A,B) = 0 indicates that A does not
trust B. Like mentioned in the rules, the first logic we im-
plemented was the triadic closure. The triadic rules were
used in four different models, balance5, balance5_recip, bal-
ance_extended, balance_extended_recip. The rules in these
models are listed in the appendix for reference. All four
of these models use the same triadic closure rules but have
different numbers of rules in them. The balance5 and bal-
anceS_recip models have 5 triadic closure rules whereas the
balance_extended and balance_extended_recip models have
16 triadic closure rules. We encode the tendency for tran-
sitivity and reciprocity in trust using the triadic rules. The
balance5 model has the following rules:

TRUSTS(A,B) & TRUSTS(B,C) — TRUSTS(A,C)

TRUSTS(A,B) & 'TRUSTS(B,C) — !TRUSTS(A,C)

ITRUSTS(A,B) & !TRUSTS(B,C) — TRUSTS(A,C)

TRUSTS(A,B) & TRUSTS(A,C) — TRUSTS(B,C)

TRUSTS(A,C) & TRUSTS(B,C) — TRUSTS(A,B)

TRUSTS(A,B) — TRUSTS(B,A) !TRUSTS(A,B) —
ITRUSTS(B,A)

These models have a base predicate not expressed in the
rules above, called KNOWS (A,B). This is the base block-
ing predicate for computing the trust value. Thus, in this pa-
per, this predicate depicts that the two users must know each
other for being able to predict the trust value. In other sta-
tistical relational frameworks, this kind of modelling can get
very inefficient with respect to prediction accuracy and/or
time. Many frameworks may require discretization of the
trust scale, since they might not be able to consider soft val-
ues for their predicates. The last two rules in the list shown
above are called “prior”. These rules are used to model the
obvious connection between the nodes (users) or some ba-
sic logic on top of which model specific rules can build on.
Another natural addition to enforce a consistent status hier-
archy suggests the inversion (the models with _inv subscript
have the priors shown below) of trust between pairs of indi-
viduals. We can represent this with the rules like:

TRUSTS(X, Y) — ITRUSTS(Y,X)
ITRUSTS(X, Y) — TRUSTS(Y,X)
The second social phenomenon we model is basic per-

sonality (Huang et al. 2012). This is a latent variable model,
which means that the predicate information is derived from

the dataset. More specifically, we consider additional predi-
cates TRUSTING and TRUSTWORTHY, modeling whether
a person is trusting or trustworthy, respectively. These pred-
icates are not part of the input data, but they correspond to
hidden variables that need to be inferred during prediction of
trust values. The intuition is that a trusting person is likely to
trust more, while a trustworthy person will earn more trust.
The model name for this is “personality”. The third social
phenomenon we model is the effect of similarity on trust.
The name for this concept is “similarity”. Homophily is the
tendency of individuals to associate with others who are sim-
ilar. The trust ratings people have assigned to one another in
our experiments are set in the context of movies (i.e., how
much do users trust others’ opinions about movies). This
makes the movie rating data especially relevant to under-
standing trust. Previous work has shown that trust in simi-
lar social network data is strongly correlated with similarity
(Ziegler and Golbeck. 2007). In this PSL model, we con-
sider an additional predicate SAMETRAITS(A,B), which
indicates the similarity of A and B according to their per-
sonal traits. For example, in our experiments, we measure
the similarity of users’ survey responses on movie prefer-
ences. The intuition here is that people with similar traits
tend to trust each other. We additionally consider the idea
that people who trust (or do not trust) a particular individual
will likely trust (or not trust) those similar to that individual.
Conversely, similar people will trust (or not trust) similar
sets of trustees.

The fourth type of models are the status models (Huang
et al. 2013). This model implements the hierarchical model
rules representing a hierarchical structure in the social net-
work. To understand this we can take three users (A,B,C)
who are in a triadic trust relationship. For instance, if A,
B and C work together in a company and A is junior to
B and C is at a higher level to both A and B. In status
model rules we would consider a rule like : “If A trusts B
and B trusts C, then C does not trust A”. This model indi-
rectly uses the “experience” as a parameter for modelling the
trust. The status models are the status and status_inv mod-
els. The rules from all the models are listed in the model ap-
pendix (including the prior rules) for detail reference. The
last type of model we modelled were the cyclic_balanced
and cyclic_balanced_unbal models. These models use the
non-cyclic type of logic rules listed in the previous section.
This paper first compared these models and analysed the per-
formance of these two models compared to other baselines
(Bach et al. 2015).

Finally, we also study the different combinations of
these models like the triad-personality, triad-similarity,
personality-similarity, triad-pers-sim. As the name suggests
these models are a combination of the basic models like de-
scribed above. The detailed list of rules in these models are
listed in the models appendix. The next section reports on
empirical experiments using these models.



Empirical Evaluation
Data sets

For this project, we evaluate the models on two different
datasets.

FilmTrust data set: FilmTrust is a web service designed
to leverage user-to-user trust values and user-to-movie rat-
ings for movie recommendation (Golbeck 2006a). The
dataset consists of a list of anonymized users, their trust val-
ues for other users, and their ratings for a set of movies.
Since the user trust values are rather sparse, we prune the
data to only include the largest connected component of
users. Users rate each other on a discrete scale of whole
numbers from 1 to 10, which we normalize to [0, 1], making
each trust value interpretable as a soft truth value. Similarly,
users rate movies with a recommendation rating between 1

FilmTrust: Average of 8 splits from SBP-2013 (with Quadratic rules)

Model Average Average Average Kendall Average Average Average AU-PRC
MAE Spearman Correlation AUC-ROC AU-PRC Negative Class
Correlation Positive Class

balance5 0.2103 0.1272 0.0983 0.5554 0.7513 0.3381
balanceS5_recip 0.2197 0.1142 0.0846 0.5446 0.7435 0.3237
balance_extended 0.2108 0.1504 0.1145 0.5724 0.7592 0.3531
balance_extended_recip 0.2187 0.1427 0.1048 0.5598 0.7525 0.3343
status 0.2258 0.1435 0.1117 0.5324 0.7361 0.3232
status_inv 0.2775 0.0256 0.0206 0.5122 0.7237 0.31
personality 0.1992 0.3148 0.2319 0.6549 0.8164 0.4365
cyclic_balanced 0.2086 0.1486 0.1147 0.5654 0.7558 0.3542
cyclic_bal_unbal 0.2342 0.0606 0.0469 0.5029 0.72 0.2986
triad-personality 0.2023 0.2783 0.2031 0.6416 0.8054 0.4206
similarity 0.2961 -0.0113 -0.0082 0.4852 0.7083 0.2831
triad-similarity 0.2729 0.0248 0.0182 0.5107 0.7358 0.2859
personality-similarity 0.2497 0.1547 0.1129 0.5679 0.7599 0.343
triad-pers-sim 0.2436 0.1445 0.1048 0.5708 0.7655 0.3444

Figure 6: FilmTrust dataset results (Quadratic Rules)

FilmTrust: Average of 8 splits from SBP-2013 (with Linear rules)

Model Average Average Average Kendall Average Average Average AU-PRC
. MAE 5 Correlati AUC-ROC AU-PRC | Negative Cl
and 5. There are 500 users in the largest connected com- comeation | postve lass |
ponent, among which there are 1574 total user-to-user trust balances 02143 0158 ooee7l 05487 0.7429 0.3355
. K balances_recip 0229 0.0999 0.0744 05419 0.7449 03182
values. The trust values are directed and thus not symmetric. balance_extended 02116 01532 01168 05671 0.7546 03478
For eaCh pair Of users Within a two_hop distance we com- balance_extended_recip 0.2288 0.1232 0.0916 0.5498 0.7444 0.3282
. L. R > . status 02278 0.1456 0.1138 05342 0.7387 03231
pute their soft Slmllarlty SAMETRAITS via a normalized status_inv 0.3204 0.0228 0.0174 0.5137 0.7292 0.2955
inner product of their overlapping rated-entry vectors. personality 02024 0199 01442| 05974 07863 03706
cyclic_balanced 0.2109 0.1414 0.109 05615 0.7486 03469
cyclic_bal_unbal 0.2367 0.041 0.0317 0.496 0.7188 0.2931
Epinions: Average of 8 splits from JMLR-2017 (with Quadratic rules) ‘fiaf"p_ers"“a"‘y 0.2037 0.1857 0.1337 0.5877 0.7806 0.3679
Model Average Average Average Kendall | Average Average | Average AU-PRC similarity 02098 -0.0074 -0.0048 04854 07102 02937
MAE Spearman Correlation AUC-ROC AU-PRC | Negative Class triad-similarity 02152 0.0989 0.0753 0.5386 0.7387 03217
Correlation Positive Class imilarity 0.2104 0.1961 0.1414 0.6041 0.7864 03879
status_inv 0.2433 0.1222 0.1034 0.6278 0.9428 0.3097 triad-pers-sim 0.2112 0.2153 0.1555 0.6218 0.7924 0.4032
status 0.1919 0.1612 0.133 0.6708 09523 0.3443
balance_extended 0.1298 0.2715 0.2228 0.789 0.9737 0.375 Figure 7: FilmTrust dataset results (Linear RUICS)
balances 0.1305 0.2774 0.2267 0.7954 09748 03774
cyclic_bal_unbal 02773 015 0.1226 0.6593 09396 03779
cyclic_balanced 0.1327 0.2711 0.2215 0.7886 0.9741 0.388
balance5_recip 0.1245 0.299 0.2499 0.8161 09762 03912 .
balance_extended_recip 0125 02869 0239 0804 09744 oz trust values. For example, PSL learns weights for the rules
triad—per.sona\ity 0.1219 0.3775 0.3084 0.9017 0.989 0.5647 in each given model from these ObSCl’Ved tl‘ust Values.
personality 0.1284 0.3902 0.3188 0.915 0.9894 0.6866

Figure 4: Epinions dataset results (Quadratic Rules)

Epinions: Average of 8 splits from JMLR-2017 (with Linear rules)

Model Average Average Average Kendall Average Average Average AU-PRC
MAE Spearman Correlation AUC-ROC AU-PRC Negative Class
Correlation Positive Class

status_inv 0.1721 0.1856 0.1714 0.6857 0.9507 0.169
status 0.1675 0.2059 0.1903 0.7059 0.9545 0.178
cyclic_bal_unbal 0.1236 0.1744 0.1573 0.6764 0.9541 0.2196
balance_extended 0.1042 0.22 0.2099 0.706 0.953 0.2501
balance_extended_recip 0.0985 0.2595 0.249 0.7315 0.9563 0.2657
balance5 0.1034 0.2385 0.2262 0.7257 0.9565 0.2689
balance5_recip 0.0953 0.262 0.2522 0.7356 0.9577 0.2707
cyclic_balanced 0.1019 0.2355 0.2232 0.7246 0.957 0.2852
triad-personality 0.0737 0.3265 0.3089 0.753 0.9598 0.4005
personality 0.0791 0.3736 0.3467 0.8211 0.9734 0.416

Figure 5: Epinions dataset results (Linear Rules)

Epinions Dataset: In the Epinions dataset the trust val-
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Figure 8: Epinions dataset heatmap results (Quadratic

Rules)

Results and Discussion

ues are directed and thus not symmetric, same as FilmTrust.
This dataset is created by snowball sampling a network of
2,000 users from the Epinions data, which contains 8,675
discrete [1, 1] trust scores between users, which we treat as
false and true TRUSTS predicate values. The task we con-
sider is collective prediction of trust values given the fully-
observed social network. We generate eight folds where, in
each fold, 1/8 of the trust values are hidden at random. The
prediction algorithm can use the remaining 7/8 of the trust
values and the full structure of the social network to learn pa-
rameters for a model and perform inference of the unknown

On both the datasets, we measure for each algorithm the av-
erage score over the eight folds for three metrics: mean av-
erage error (MAE), Kendall’s (tau) statistic, and Spearman’s
rank correlation , average AU-ROC, average AU-PR (both
positive and negative class). MAE measures the absolute
error on the soft truth-values, while and measure ranking
performance. The ROC and AUPR values give an idea of the
classification accuracy score. The average scores are listed
in Table 1-4. Since the Epinions dataset does not have the
similarity information the model set for both the datasets is
different. The result tables show the difference in the models
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Figure 9: Epinions dataset heatmap results (Linear Rules)
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Figure 10: FilmTrust dataset heatmap results (Quadratic
Rules)

used for the two datasets. The standard deviation has been
calculated for all the metrics, to get a sense of the error graph
across the dataset along with knowing the averages.

The runtimes for the Epinions datasets, including all 8
splits and all 10 models, is 10.01 mins. The runtime for
the FilmTrust dataset, including all 8 dataset splits and for
14 different models, is 25.03 mins.

In PSL, any weighted rule can be chosen to square their
hinge-loss functions. Squaring the hinge-loss (or “squared
potentials”) can result in better performance, as seen in the
experiments in this paper as well. Non-squared potentials
tend to encourage a “winner take all” optimization, while
squared potentials encourage more trading off. The results
with squared rules is better compared to the linear rules.
The weights for the learned rule models are more accurate
and multifarious when squared as opposed to the linear rule
models.

The big table with so many models and evaluation param-
eters is difficult to read and analyse. So we use heatmaps to
understand which model(s) performs the best in all (or most)
categories. The heat maps are shown in figures (put numbers
here). The models are relatively ranked in the heatmaps,
where for each column (evaluation parameter) is colored
light to dark, representing the worst to best evaluation pa-
rameter for that column. All the evaluation parameters (ex-
cept MAE) are higher the better. The cell values represent
the evaluation parameter values same as in the tables.

These heatmaps give us a better understanding of the
comparison between the different models and helps us see
which models perform better than the others. The four
heatmaps show that the triad-pers, triad-pers-sim and the
personality models are overall the best performing models
and have dark rows in all four heatmaps. The personality

Trust Model Evaluation: FilmTrust SBP-2013 Linear
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Figure 11: FilmTrust dataset heatmap results (Linear Rules)

model seems to perform the best amongst these top three.
Since personality model is a latent model and using only la-
tent rules does not give us as much information about the
model as compared to the basic models, we believe that the
best model is the triad-personality model for the Epinions
dataset and triad-pers-sim model for the filmTrust dataset.

Conclusions and Future Work

This paper explores different PSL models and compares the
evaluation metrics of these models, to be able to model trust
in social networks. PSL framework allows for easy explo-
ration of trust models based on different assumptions about
social phenomena. To demonstrate the effectiveness of PSL
models for this task we compare the effectiveness of these
models on two different dataset and across a variety of so-
cial phenomena and rule models. We also explore additional
models by adding different kinds of base models to build
composite models. We explore the results over multiple data
splits and analyse both the average and the standard devia-
tion of the evaluation parameters to be able to get a holis-
tic view of the model performance. We also explore other
PSL parameters like using weight learning and choosing
to square their hinge-loss functions of PSL weighted rules.
This gives us a richer analysis of the weights of different
rules in the models and helps us to remove unnecessary rules
from a model.

A lot of more study is possible in this field. These mod-
els can be used on other datasets with different data types.
If more information is available in the dataset with differ-
ent kinds of social phenomenon more rules can be added
to existing models to give better results. Same models can
be applied to different datasets with different contexts too.
Since trust can be morphed as friendships, professional re-
lationships, etc. these models can be really useful in rec-
ommender systems for social media platforms with different
kinds of user networks.

Appendix

The list of rules for each of the models in the paper is given
below.
* balance5:

Trusts(A, B) Trusts(B, C) — Trusts(A, C)

Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)

ITrusts(A, B) & !Trusts(B, C) — Trusts(A, C)

Trusts(A, B) & Trusts(C, B) — Trusts(A, C)



Trusts(B, A) & Trusts(B, C) — Trusts(A, C)
two-sided prior —

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
balance5 _recip:

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
ITrusts(A, B) & !Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — Trusts(A, C)
two-sided prior:

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
Trusts(A, B) — Trusts(B, A)

Trusts(A, B) — !Trusts(B, A)
balance_extended :

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
ITrusts(A, B) & !Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — Trusts(A, C)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
ITrusts(A, B) & Trusts(B, C) — !Trusts(A, C)
Trusts(A, B) & !Trusts(C, B) — !Trusts(A, C)
ITrusts(A, B) & Trusts(C, B) — !Trusts(A, C)
Trusts(A, B) & !Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & !Trusts(B, C) — !Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — !Trusts(A, C)
Trusts(B, A) & !Trusts(B, C) — Trusts(A, C)
Trusts(B, A) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & !Trusts(C, B) — !Trusts(A, C)
ITrusts(B, A) & Trusts(C, B) — !Trusts(A, C)
Trusts(B, A) & !Trusts(C, B) — Trusts(A, C)
balance _extended recip:

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
ITrusts(A, B) & !Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — Trusts(A, C)
ITrusts(A, B) & Trusts(B, C) — !Trusts(A, C)
Trusts(A, B) & !Trusts(C, B) — !Trusts(A, C)
ITrusts(A, B) & Trusts(C, B) — !Trusts(A, C)
Trusts(A, B) & !Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & !Trusts(B, C) — !Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — !Trusts(A, C)
Trusts(B, A) & !Trusts(B, C) — Trusts(A, C)
Trusts(B, A) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & !Trusts(C, B) — !Trusts(A, C)

ITrusts(B, A) & Trusts(C, B) — !Trusts(A, C)
ITrusts(B, A) & !Trusts(C, B) — Trusts(A, C)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
Trusts(A, B) — Trusts(B, A)

ITrusts(A, B) — !Trusts(B, A)

status :

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
Trusts(A, B) & !Trusts(C, B) — Trusts(A, C)
ITrusts(A, B) & Trusts(C, B) — !Trusts(A, C)
Trusts(B, A) & !Trusts(B, C) — !Trusts(A, C)
ITrusts(B, A) & Trusts(B, C) — Trusts(A, C)
Trusts(B, A) & Trusts(C, B) — !Trusts(A, C)
Trusts(B, A) & !Trusts(C, B) — Trusts(A, C)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
status_inv :

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
ITrusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
Trusts(A, B) & !Trusts(C, B) — Trusts(A, C)
Trusts(A, B) & Trusts(C, B) — !Trusts(A, C)
Trusts(B, A) & !Trusts(B, C) — !Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — Trusts(A, C)
Trusts(B, A) & Trusts(C, B) — !Trusts(A, C)
Trusts(B, A) & !Trusts(C, B) — Trusts(A, C)
two-sided prior

Knows(A, B) Prior(’0’) — Trusts(A, B)
Knows(A, B) Trusts(A, B) — Prior(’0’)
Inverse rules

Trusts(A, B) — Trusts(B, A)

ITrusts(A, B) — !Trusts(B, A)

personality :

Trusts(A, B) — TrustWorthy(B)

Trusts(A, B) — Trusting(A)

ITrusts(A, B) — !TrustWorthy(B)

ITrusts(A, B) — !Trusting(A)

Trusting(A) & TrustWorthy(B) — Trusts(A, B)
Trusting(A) & !TrustWorthy(B) — !Trusts(A, B)
two-sided prior

Knows(A, B) & Prior(’0’) -;, Trusts(A, B)
Knows(A, B) & Trusts(A, B) -;, Prior(C0’)
cyclic_balanced

Trusts(A, B) & Trusts(B, C) — Trusts(C, A)
Trusts(A, B) & !Trusts(B, C) — Trusts(C, A)
Trusts(A,B) & Trusts(A,C) — Trusts(C,B)
Trusts(A,B) & !Trusts(A,C) — !Trusts(C,B)



Trusts(A,B) & Trusts(A,C) — !Trusts(C,B)
Trusts(A,B) & !Trusts(A,C) — Trusts(C,B)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
cyclic_bal_unbal :

Trusts(A, B) & Trusts(B, C) — Trusts(C, A)
ITrusts(A, B) & !Trusts(B, C) — Trusts(C, A)
Trusts(A,B) & Trusts(A,C) — Trusts(C,B)
Trusts(A,B) & !Trusts(A,C) — !Trusts(C,B)
ITrusts(A,B) & Trusts(A,C) — !Trusts(C,B)
Trusts(A,B) & !Trusts(A,C) — Trusts(C,B)
Trusts(A, B) & !Trusts(B, C) — Trusts(C, A)
Trusts(A, B) & Trusts(B, C) — !Trusts(C, A)
Trusts(A,B) & Trusts(A,C) — !Trusts(C,B)
Trusts(A,B) & !Trusts(A,C) — Trusts(C,B)
ITrusts(A,B) & Trusts(A,C) — Trusts(C,B)
ITrusts(A,B) & !Trusts(A,C) — !Trusts(C,B)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
triad-personality :

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
ITrusts(A, B) & !Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — Trusts(A, C)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
Trusts(A, B) — TrustWorthy(B)

Trusts(A, B) — Trusting(A)

Trusts(A, B) — !TrustWorthy(B)

!Trusts(A, B) — !Trusting(A)

Trusting(A) & TrustWorthy(B) — Trusts(A, B)
!Trusting(A) & !TrustWorthy(B) — !Trusts(A, B)
similarity:

SameTastes(A, B) — Trusts(A, B)
ISameTastes(A, B) — !Trusts(A, B)

Trusts(A, B) & SameTastes(B, C) — Trusts(A, C)
ITrusts(A, B) & SameTastes(B, C) — !Trusts(A, C)
Trusts(A, C) & SameTastes(A, B) — Trusts(B, C)
Trusts(A, C) & SameTastes(A, B) — !Trusts(B, C)

triad-similarity:

two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
SameTastes(A, B) — Trusts(A, B)

ISameTastes(A, B) — !Trusts(A, B)

Trusts(A, B) & SameTastes(B, C) — Trusts(A, C)
Trusts(A, B) & SameTastes(B, C) — !Trusts(A, C)
Trusts(A, C) & SameTastes(A, B) — Trusts(B, C)
ITrusts(A, C) & SameTastes(A, B) — !Trusts(B, C)
personality-similarity:

Trusts(A, B) — TrustWorthy(B)

Trusts(A, B) — Trusting(A)

ITrusts(A, B) — !TrustWorthy(B)

Trusts(A, B) — !Trusting(A)

Trusting(A) & TrustWorthy(B) — Trusts(A, B)
Trusting(A) & !TrustWorthy(B) — !Trusts(A, B)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
SameTastes(A, B) — Trusts(A, B)

ISameTastes(A, B) — !Trusts(A, B)

Trusts(A, B) & SameTastes(B, C) — Trusts(A, C)
Trusts(A, B) & SameTastes(B, C) — !Trusts(A, C)
Trusts(A, C) & SameTastes(A, B) — Trusts(B, C)
ITrusts(A, C) & SameTastes(A, B) — !Trusts(B, C)
triad-pers-sim:

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) — TrustWorthy(B)

Trusts(A, B) — Trusting(A)

ITrusts(A, B) — !TrustWorthy(B)

ITrusts(A, B) — !Trusting(A)

Trusting(A) & TrustWorthy(B) — Trusts(A, B)
Trusting(A) & !TrustWorthy(B) — !Trusts(A, B)
two-sided prior

Knows(A, B) & Prior(’0’) — Trusts(A, B)
Knows(A, B) & Trusts(A, B) — Prior(’0’)
SameTastes(A, B) — Trusts(A, B)

ISameTastes(A, B) — !Trusts(A, B)

Trusts(A, B) & SameTastes(B, C) — Trusts(A, C)
ITrusts(A, B) & SameTastes(B, C) — !Trusts(A, C)
Trusts(A, C) & SameTastes(A, B) — Trusts(B, C)
ITrusts(A, C) & SameTastes(A, B) — !Trusts(B, C)

All rules have a “Knows(X,Y) blocking predicate for
every any predicate with two nodes). For example,
Trusts(X,Y). The extended result tables with the standard
deviations is shown below.

The extended result tables (including the standard devia-
tion) are given below :

Trusts(A, B) & Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & !Trusts(B, C) — !Trusts(A, C)
ITrusts(A, B) & !Trusts(B, C) — Trusts(A, C)
Trusts(A, B) & Trusts(C, B) — Trusts(A, C)
Trusts(B, A) & Trusts(B, C) — Trusts(A, C)



Epinions: Average of 8 splits from JMLR-2017 (with Quadratic rules)

Model Average MAE | MAE (STD) Average Spearman Average Kendall Kendall Average AUC-ROC | Average AU-PRC | AU-PRC Positive | Average AU-PRC | AU-PRC Negative
Spearman Correlation (STD) Correlation Correlation (STD) | AUC-ROC (STD) Positive Class Class (STD) Negative Class Class (STD)
Correlation
status_inv 0.2433 0.0062 0.1222 0.0262 0.1034 0.0229 0.6278 0.0222 0.9428 0.01 0.3097 0.034
status 0.1919 0.0078 0.1612 0.0288 0.133 0.0229 0.6708 0.0267 0.9523 0.0093 0.3443 0.0336
balance_extended 0.1298 0.009 0.2715 0.0253 0.2228 0.0202 0.789 0.0249 0.9737 0.0067 0.375 0.049
balance5 0.1305 0.009 0.2774 0.0231 0.2267 0.0189 0.7954 0.0201 0.9748 0.0062 0.3774 0.0434
cyclic_bal_unbal 0.2773 0.0079 0.15 0.0292 0.1226 0.0239 0.6593 0.0279 0.9396 0.0126 0.3779 0.0571
cyclic_balanced 0.1327 0.0085 02711 0.0224 0.2215 0.0183 0.7886 0.0187 0.9741 0.0062 0.388 0.0502
balance5_recip 0.1245 0.0094 0.299 0.0275 0.2499 0.0253 0.8161 0.0228 0.9762 0.0056 0.3912 0.0441
balance_extended_recip 0.125 0.0094 0.2869 0.0253 0.239 0.0229 0.804 0.0254 0.9744 0.007 0.3917 0.0441
triad-personality 0.1219 0.0082 0.3775 0.0275 0.3084 0.0224 0.9017 0.0133 0.989 0.0026 0.5647 0.0398
personality 0.1284 0.0073 0.3902 0.031 0.3188 0.0253 0.915 0.0146 0.9894 0.0031 0.6866 0.0383

Figure 12: Epinions dataset heatmap results extended (Quadratic Rules)

Epinions: Average of 8 splits from JMLR-2017 (with Linear rules)

Model Average MAE | MAE (STD) Average Spearman Average Kendall Kendall Average AUC-ROC | Average AU-PRC [ AU-PRC Positive | Average AU-PRC | AU-PRC Negative
Spearman Correlation (STD) Correlation Correlation (STD) | AUC-ROC (STD) Positive Class Class (STD) Negative Class Class (STD)
Correlation
status_inv 0.1721 0.0106 0.1856 0.0235 0.1714 0.0215 0.6857 0.0135 0.9507 0.0059 0.169 0.0249
status 0.1675 0.0092 0.2059 0.0263 0.1903 0.0237 0.7059 0.0158 0.9545 0.0051 0.178 0.0306
cyclic_bal_unbal 0.1236 0.0094 0.1744 0.0413 0.1573 0.0362 0.6764 0.0372 0.9541 0.0067 0.2196 0.0603
balance_extended 0.1042 0.0111 0.22 0.0321 0.2099 0.0307 0.706 0.0288 0.953 0.0094 0.2501 0.0467
balance_extended_recip 0.0985 0.011 0.2595 0.0234 0.249 0.0219 0.7315 0.0181 0.9563 0.0079 0.2657 0.0361
balances 0.1034 0.0096 0.2385 0.0376 0.2262 0.0338 0.7257 0.0304 0.9565 0.0079 0.2689 0.0322
balance5_recip 0.0953 0.0096 0.262 0.0293 0.2522 0.027 0.7356 0.0205 0.9577 0.007 0.2707 0.0287
cyclic_balanced 0.1019 0.0085 0.2355 0.0298 0.2232 0.0275 0.7246 0.0241 0.957 0.0079 0.2852 0.0538
triad-personality 0.0737 0.0081 0.3265 0.0421 0.3089 0.0393 0.753 0.032 0.9598 0.0085 0.4005 0.0375
personality 0.0791 0.0077 0.3736 0.0363 0.3467 0.0341 0.8211 0.0247 0.9734 0.0077 0416 0.0623

Figure 13: Epinions dataset heatmap results extended (Linear Rules)

FilmTrust: Average of 8 splits from SBP-2013 (with Quadratic rules)

Model Average MAE | MAE (STD) Average Spearman Average Kendall Kendall Average AUC-ROC | Average AU-PRC | AU-PRC Positive | Average AU-PRC | AU-PRC Negative
Spearman Correlation (STD) Correlation Correlation (STD) | AUC-ROC (STD) Positive Class Class (STD) Negative Class Class (STD)
Correlation
balance5 0.2103 0.008 0.1272 0.0555 0.0983 0.042 0.5554 0.0251 0.7513 0.0219 0.3381 0.0197
balance5_recip 0.2197 0.0074 0.1142 0.047 0.0846 0.0342 0.5446 0.0458 0.7435 0.043 0.3237 0.0417
balance_extended 0.2108 0.007 0.1504 0.0428 0.1145 0.0323 0.5724 0.0196 0.7592 0.0147 0.3531 0.0285
balance_extended_recip 0.2187 0.0066 0.1427 0.0456 0.1048 0.0325 0.5598 0.0463 0.7525 0.0408 0.3343 0.0442
status 0.2258 0.0092 0.1435 0.0452 0.1117 0.0335 0.5324 0.0404 0.7361 0.0326 0.3232 0.0201
status_inv 0.2775 0.0142 0.0256 0.0536 0.0206 0.0396 0.5122 0.0491 0.7237 0.0384 0.31 0.038
personality 0.1992 0.0089 0.3148 0.0408 0.2319 0.0299 0.6549 0.0178 0.8164 0.0224 0.4365 0.0271
cyclic_balanced 0.2086 0.0077 0.1486 0.057 0.1147 0.0446 0.5654 0.0285 0.7558 0.0093 0.3542 0.0313
cyclic_bal_unbal 0.2342 0.0064 0.0606 0.0484 0.0469 0.0363 0.5029 0.0351 0.72 0.0236 0.2986 0.0244
triad-personality 0.2023 0.0083 0.2783 0.0306 0.2031 0.0218 0.6416 0.0202 0.8054 0.0251 0.4206 0.0211
similarity 0.2961 0.0146 -0.0113 0.0656 -0.0082 0.047 0.4852 0.0542 0.7083 0.0364 0.2831 0.0395
triad-similarity 0.2729 0.013 0.0248 0.0547 0.0182 0.0392 0.5107 0.0396 0.7358 0.0375 0.2859 0.0181
personality-similarity 0.2497 0.0118 0.1547 0.0432 0.1129 0.0315 0.5679 0.0297 0.7599 0.0357 0343 0.0261
triad-pers-sim 0.2436 0.0116 0.1445 0.0429 0.1048 0.0308 0.5708 0.0257 0.7655 0.0337 0.3444 0.0246

Figure 14: FilmTrust

FilmTrust: Average of 8 splits from SBP-2013 (with Linear rules)

dataset heatmap results extended (Quadratic Rules)

Model Average MAE | MAE (STD) Average Spearman Average Kendall Kendall Average AUC-ROC | Average AU-PRC [ AU-PRC Positive | Average AU-PRC | AU-PRC Negative
Spearman | Correlation (STD) Correlation Correlation (STD) | AUC-ROC (STD) Positive Class Class (STD) Negative Class Class (STD)

balance5 0.2143 0.0083 0.1159 0.0435 0.0897 0.0352 0.5487 0.0212 0.7429 0.0213 0.3355 0.022
balance5_recip 0.229 0.0112 0.0999 0.05 0.0744 0.0369 0.5419 0.0458 0.7449 0.0437 0.3182 0.0385
balance_extended 0.2116 0.0083 0.1532 0.0644 0.1168 0.0499 0.5671 0.0316 0.7546 0.016 0.3478 0.0304
balance_extended_recip 0.2288 0.0098 0.1232 0.0542 0.0916 0.0396 0.5498 0.0413 0.7444 0.0392 0.3282 0.0361
status 0.2278 0.0108 0.1456 0.0639 0.1138 0.0489 0.5342 0.0478 0.7387 0.0368 0.3231 0.0184
status_inv 0.3204 0.0169 0.0228 0.0607 0.0174 0.0453 0.5137 0.0565 0.7292 0.0427 0.2955 0.0441
personality 0.2024 0.0091 0.1996 0.049 0.1442 0.0354 0.5974 0.0231 0.7863 0.0314 0.3706 0.043
cyclic_balanced 0.2109 0.0083 0.1414 0.0516 0.109 0.0396 0.5615 0.0253 0.7486 0.019 0.3469 0.0221
cyclic_bal_unbal 0.2367 0.0062 0.041 0.0355 0.0317 0.0261 0.496 0.0372 0.7188 0.0267 0.2931 0.0257
triad-personality 0.2037 0.0085 0.1857 0.0641 0.1337 0.0454 0.5877 0.0326 0.7806 0.0329 0.3679 0.0393
similarity 0.2098 0.0081 -0.0074 0.072 -0.0048 0.0533 0.4854 0.0547 0.7102 0.0347 0.2937 0.0377
triad-similarity 0.2152 0.0076 0.0989 0.0499 0.0753 0.0391 0.5386 0.0259 0.7387 0.0227 0.3217 0.0292
personality-similarity 0.2104 0.0094 0.1961 0.0537 0.1414 0.0412 0.6041 0.0332 0.7864 0.0379 0.3879 0.0413
triad-pers-sim 0.2112 0.008 0.2153 0.0441 0.1555 0.0314 0.6218 0.0289 0.7924 0.0294 0.4032 0.0251

Figure 15: FilmTrust dataset results extended (Linear Rules)
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